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Hall mobility of amorphous Ge,ShyTes

S. A. Baily*
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Heng Li
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The electrical conductivity, Seebeck coefficient, and Hall coefficient of 3 micron thick films of
amorphous GeaSbhaTes have been measured as functions of temperature from room temperature
down to as low as 200 K. The electrical conductivity manifests an Arrhenius behavior. The Seebeck
coefficient is p-type with behavior indicative of multi-band transport. The Hall mobility is n-type
and low (near 0.07 cm?/V sec at room temperature).

PACS numbers: 72.80.Ng, 72.20.Pa, 72.20.My

Chalcogenide glasses have attracted considerable at-
tention because of their utility in switching devices.! In
particular, thin films of non-crystalline GesShoTes are
currently used in many applications. However, the fun-
damental nature of the steady-state electronic transport
of these covalent glasses remains unresolved. Is the in-
trinsic mobility of the charge carriers high (> 1 em?/V
sec) or low (< 1 em?/V sec)?

Here we address steady-state electronic transport of
the non-crystalline state of GesShsTes films.  Three-
micron-thick films were deposited on water-cooled cover-
glags substrates by radio-frequency sputtering from sto-
ichiometric targets in 10 mTorr of Argon at the Univer-
sity of Utah. In-plane electronic transport measurements
were made at the University of New Mexico. Conductiv-
ity measurements were performed with a 4-probe tech-
nique. Seebeck coefficients were measured using a pair
of heaters and a differential thermocouple. Hall-effect
measurements utilized the van der Pauw method.? Ref-
erence 3 provides details of the electrical transport mea-
surements.

As illustrated in Fig. 1, the electrical conductivities
of non-crystalline films were found to be thermally ac-
tivated between room temperature and about 200 K:
o = oyexp(—E,/kpT). Each sample has an activation
energy, E,, between 0.36 eV and 0.43 eV with a pre-
exponential factor oy ~ 107 S/em. These observations
are consistent with literature values.*©

The Seebeck coefficients of these films were all large
(~1mV/K) and p-type. Figure 2 presents results ob-
tained for one sample. The measurements become un-
reliable below 240 K. The results can be fit with the
single-band semiconductor fornuila,

q \kgT
where kp is the Boltzmann constant, ¢ is the carrier’s
charge, and A is the heat-of-transport constant. Single-
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FIG. 1: Conductivity vs. inverse temperature for a typical
film, the lines represents a linear least squares fits to the data.
The best fit line has an activation energy of 0.43 eV.

band transport requires that Fg < E; and A > 0. How-
ever, our data yields Eg > E, and A < 0. Indeed,
these observations are similar to those reported by Van-
der Plas and Bube for Ge-Te and Sh-Ge non-crystalline
films.” We concur with Vander Plas and Bube in con-
cluding that electrical transport in these films does not
permit analysis in terms of a single type of charge carrier
executing a single mode of motion.

The Hall effect remains the most promising means to
probe charge carriers’ intrinsic (trap-free) steady-state
transport.” The Hall mobility measures charge carriers’
deflection by a magnetic field. The Hall mobility is intrin-
gic in that it is unaffected by trapping since the Lorentz
force only operates on moving charges.® For free carri-
ers the Hall mobility equals the intrinsic (conductivity)
mobility, the mobility that enters into the steady-state
electrical conductivity. Trapping affects the electrical
conductivity by reducing the carrier density. By con-
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FIG. 2: Seebeck coefficient vs. temperature with datapoints
denoted by ‘X’ symbols taken using twice the heater power of
those denoted by ‘4’ symbols.
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FIG. 3: Hall data at 295 K, the line represents a linear least
squares fit.

trast, the relationship between the Hall mobility and the
intrinsic (conductivity) mobility is more complex for car-
riers that move by thermally assisted hopping.® In par-
ticular, the Hall mobility for such carriers is frequently
significantly larger and less temperature dependent than
the conductivity mobility. In addition, the sign of the
Hall effect for hopping-type carriers is often anomalously
signed.® 1% Then, for example, carriers that produce a
p-type Seebeck effect produce an n-type Hall effect.
Hall effect measurements on low-conductivity films are
difficult. Nonetheless, we made sufficiently symmetric
contacts to one film to enable us to isolate the Hall sig-
nals. These small signals, presented in Figs. 3 and 4, cor-
respond to n-type Hall mobilities of 0.0740.01 cm?/V sec
and 0.07 £0.02 cm?/V sec at temperatures of 295 K and

275 K, respectively.
These measurements indicate that the Hall mobility is
truly low, < 1 em?/V sec. Were the Hall mobility to be

high, > 1 ecm?/V sec, it would have been easily detected.
Amorphous Ge,Sb,Tes 275 K
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FIG. 4: Hall data at 275 K, the line represents a linear least
squares fit.

Furthermore, the low mobility is unlikely to be the result
of a fortuitous cancellation of contributions from elec-
trons and holes as their relative contributions would have
changed considerably with changing temperature.

Our measurement of an anomalously signed, very low
Hall mobility possessing a weak temperature-dependence
is consistent with the predominance of charge carriers
that move by thermally assisted hopping. Indeed, these
observations and conclusions are in accord with mea-
surements and analysis of steady-state transport mea-
surements of related chalcogenide glasses: As-Te based
glasses, AssSes, AsySs, and ShyTeq 39:10.15.16
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